Riffle shuffles with biased cuts

نویسندگان

  • Sami Assaf
  • Kannan Soundararajan
چکیده

The well-known Gilbert-Shannon-Reeds model for riffle shuffles assumes that the cards are initially cut ‘about in half’ and then riffled together. We analyze a natural variant where the initial cut is biased. Extending results of Fulman (1998), we show a sharp cutoff in separation and L-infinity distances. This analysis is possible due to the close connection between shuffling and quasisymmetric functions along with some complex analysis of a generating function. Résumé. Le modèle de Gilbert-Shannon-Reeds pour melange de cartes suppose que les cartes sont d’abord coupés énviron de moitié’, puis intescaler ensemble. Nous analysons une variante naturelle, où la coupe initiale est biaisé. Nous propons une extension des résultats de Fulman (1998), nous montrent une forte coupure dans les distances de séparation et L-infinity. Cette analyse est possible grâce à l’étroite relation entre brassage et fonctions quasisymmetric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O ct 1 99 9 Affine shuffles , shuffles with cuts , and patience sorting

Type A affine shuffles are compared with riffle shuffles followed by a cut. Although these probability measures on the symmetric group Sn are different, they both satisfy a convolution property. Strong evidence is given that when the underlying parameter q satisfies gcd(n, q−1) = 1, the induced measures on conjugacy classes of the symmetric group coincide. This gives rise to interesting combina...

متن کامل

Affine Shuffles, Shuffles with Cuts, and Patience Sorting

Type A affine shuffles are compared with riffle shuffles followed by a cut. Although these probability measures on the symmetric group Sn are different, they both satisfy a convolution property. Strong evidence is given that when the underlying parameter q satisfies gcd(n, q−1) = 1, the induced measures on conjugacy classes of the symmetric group coincide. This gives rise to interesting combina...

متن کامل

Biased Riffle Shuffles, Quasisymmetric Functions, and the Rsk Algorithm

This paper highlights the connections between riffle shuffles and symmetric functions. We analyze the effect of a riffle shuffle followed by the RSK algorithm on the resulting permutation. The theory of shuffling also allows us to deduce certain quasisymmetric function identities. Finally, we present a result about the eigenvalues of the Markov chain induced by riffle shuffles.

متن کامل

Clumpy Riffle Shuffles

Sticky or clumpy riffle shuffles appear quite naturally in applications; however, the problem of precisely describing the convergence rate of such modified riffle shuffles has remained open for a long time. In this paper, we develop an alternative family of clumpy shuffles, and analyze their convergence rate. We then provide empirical evidence that our alternative shuffles converge at a similar...

متن کامل

The cutoff phenomenon for randomized riffle shuffles

We study the cutoff phenomenon for generalized riffle shuffles where, at each step, the deck of cards is cut into a random number of packs of multinomial sizes which are then riffled together.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011